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Abstract--Fracture growth gcometries in linear elastic materials are sensitive to the ratio between the remote 
differential stress, or T-stress, and the fracture driving stress. Two mechanically interacting fractures follow 
straighter paths for greater values of this ratio. We demonstrate that the degree of curvature that develops 
between two mechanically interacting fractures is also controlled by such factors as sub-critical fracture growth 
and fracture surface roughness. Sub-critical fracture growth limits the development of fracture curvature by 
decreasing the fracture driving stress needed for propagation. Fracture surface roughness can affect the 
development of fracture curvature by limiting the magnitude of the shear displacement discontinuity that can be 
accommodated along the fracture. Thus, propagation paths for two mechanically interacting fractures can be 
quite straight even in the presence of small to moderate differential stresses. Consequently, the absence of 
fracture curvature does not necessarily imply a high differential stress state. 

INTRODUCTION 

FOR over a century, geologists have attempted to relate 
the geometry of dominantly opening-mode fractures 
(i.e. joints, veins and dikes) to the ambient stress field 
present during their formation (see Pollard & Aydin 
1988 for a discussion). Corresponding advances in our 
understanding of the mechanics of fracture over this 
time have greatly improved the methods and techniques 
used for these interpretations. For example, mechanical 
analyses have helped to relate joint and dike orien- 
tations to the existing principal stress trajectories (Ode 
1957, Muller & Pollard 1977, Engelder & Geiser 1980) 
and to relate joint and dike dilations to driving stress 
magnitudes (Pollard & Muller 1976, Delaney & Pollard 
1981, Segall & Pollard 1983). A better understanding of 
the relationship between stress state and fracture geom- 
etry is critical to our further understanding of geologic 
fracture problems. 

It is well known that when fractures grow under 
conditions of mixed-mode I-II loading (Knl = 0), the 
paths of the fractures are often curved or kinked (Lawn 
& Wilshaw 1975). Analyses based on linear elastic 
fracture mechanics have shown that smoothly curved 
fracture paths in non-uniform stress fields are such that 
the mode II stress intensity factor is minimized (Gold- 
stein & Salganik 1974, Cotterell & Rice 1980). In par- 
ticular, as the remote differential stress decreases, frac- 
ture propagation paths for mechanically interacting 
fractures become more curvaceous. Consequently, it 
has been suggested that fracture interaction geometries 
in homogeneous and isotropic materials are indicative of 
the ambient stress state present during fracture forma- 
tion (Olson & Pollard 1989, Cruikshank et al. 1991, 
Thomas & Pollard 1993). 

In this paper, we explore the following question: if a 

relatively straight fracture propagation path is observed 
for two mechanically interacting fractures in a homo- 
genous and isotropic rock mass, does this necessarily 
indicate that a large differential stress existed during 
propagation? Or could other factors result in straight 
propagation paths even in the presence of small to 
moderate differential stresses? 

BACKGROUND 

We restrict our attention to two-dimensional fractures 
subject to in-plane (modes I and II) loadings. If the 
material is homogeneous and isotropic, pure-mode I 
(opening) fractures will be oriented perpendicular to o~, 
the greatest remote tensile stress (Stevens 1911, Ode 
1957, Anderson 1972, Lawn & Wilshaw 1975). The 
smoothly curving path taken by a completely open 
fracture will be such that mode II (shear) loading near 
the fracture tip is minimized (Cotterell & Rice 1980). 
This result, known as the criterion o f  local symmetry 
(Goldstein & Salganik 1974), is consistent with the 
various mixed-mode propagation criteria proposed in 
the literature in that all these criteria predict abrupt 
changes (kinks) in the fracture path whenever Kn # 0 
(Erdogan & Sih 1963, Hussain et al. 1974, Sih 1974). In 
particular, since Ktl = 0 for any isolated planar fracture 
oriented parallel to a principal stress direction, the 
propagation path of the fracture shown in Fig. l(a) in a 
perfectly homogeneous material will be a straight line 
parallel to the x3-axis. 

Local stress perturbations 

As real materials are not perfectly homogeneous, 
local heterogeneities induce shear stresses and shear 
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Fig. 1. (a) Co-ordinate system used to define the T-stress and stress ratio R. Inset demonstrates how a local heterogeneity 
can alter the propagation path. (b) Co-ordinate system used to describe the interactions between two fractures arranged in 

an echelon geometry. 

displacement discontinuities at actual fracture tips (K n 
0), causing propagation to deviate from a straight path 

(Fig. la--inset). Whether the deviated fracture tip re- 
turns to the projected straight path or continues to 
deviate will depend upon the stability of the straight 
propagation path, which is controlled by the transverse 
or 'T-stress (Cotterel11966, Cottereli & Rice 1980). For 
the fracture shown in Fig. 1 (a), the T-stress is defined as: 

T = (o~ - a~), (1) 

where o~ (o~) is the greatest (least) remote principal 
stress and tension is positive. 

Since a deviated fracture t ip is no longer parallel to the 
direction of the remote principal stress, the T-stress 
induces a shear displacement discontinuity at the frac- 
ture tip. If T > 0, the shearing induced by the T-stress 
will be of the same sign as that induced by the local 
heterogeneity. Hence, the sign of the Ku induced by the 
T-stress will be the same as that induced by the hetero- 
geneity and the fracture path will continue to curve. 
Thus when T > 0, the straight fracture propagation path 
is unstable. 

If T < 0, the shearing induced by the T-stress will be in 
the opposite sense to that induced by the local hetero- 
geneity and the signs of the respective Kus will be 
different. When the magnitude of K n induced by the 
T-stress is much greater than the magnitude of the Kn 
induced by the local heterogeneity, the fracture will 

return to the straight path. Therefore whenever T < 0 
and the magnitude of T is much greater than the magni- 
tude of the local stress perturbation, the straight fracture 
propagation path is stable. 

Common sources of heterogeneity in a rock mass are 
other fractures. When the spacing between two fractures 
approaches the length of the larger fracture, their mech- 
anical interaction will induce non-uniform, mixed-mode 
loading, possibly resulting in curved propagation paths 
(Swain & Hagan 1978, Pollard et al. 1982, Sempere & 
Macdonald 1986, Fleck 1991). For two mechanically 
interacting fractures arranged in an echelon geometry 
(Fig. lb), the magnitude of the stress perturbation at one 
fracture due to the presence of a second fracture can be 
expressed as an interaction or '/'-stress: 

I = Cg(o' i + e) ,  (2) 

where Cg depends only on the geometry of the fractures 
and (cr] + P) is the driving stress of the second fracture. 
For fractures of length 2a, where the distance between 
the inner fracture tips is equal to r d (Fig. lb), it can be 
shown (e.g. Du & Aydin 1991) that for very close 
spacing (rd << a), the maximum value of Cg is on the 
order of: 

Lv rdJ 

where O[] indicates the order of magnitude. For very 
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Fig. 2. Sensitivity of fracture paths to the stress ratio R. Two initial 
flaws were of equal length and arranged as shown in (a). Only the inner 

right fracture tip of the lower fracture was allowed to propagate. 

wide spacing ( r  d > 1.5a), the maximum value of Cg is on 
the order of: 

Cg ~ 0 . (4) 

For intermediate spacing, Cg can be determined nu- 
merically (e.g. Thomas & Pollard 1993). 

Unlike the T-stress which is constant for a given 
loading, the/-stress varies continuously as the fracture 
propagates. This precludes the derivation of a simple 
stability criterion for straight paths. However, as for an 
isolated fracture, if T > 0, the shearing induced by the T- 
stress at the tips of the interacting fractures will be in 
same direction as that induced by /-stress and the 
straight path will be unstable. If T < 0, the stability of the 
straight path will depend on the relative magnitudes of 
the T- stress and the/-stress. 

For example, consider a given initial fracture geom- 
etry (e.g. Fig. 2a) where the fractures are oriented 
parallel to the principal stresses and where the geometry 
varies only in two dimensions. For a range of loadings 
that are both sufficient for propagation to occur and such 
that T < 0, the tendency for straight propagation is 
quantified by the ratio R (Cruikshank et al. 1991). 

- T  _ ( a ~ - a ~ )  
R - (o~ + P~ (o~ + P ) '  (5) 

where o~ - o[  is the remote differential stress. A similar 
ratio between the remote differential stress and an 
average fracture driving stress for mixed-mode I-III 
loadings is discussed by Pollard et al. (1982). 

Figure 2 demonstrates the effect that varying stress 

ratios R have on fracture paths for two mechanically 
interacting open fractures propagating towards each 
other in an infinite homogeneous isotropic linear elastic 
medium. Fracture paths were calculated using a bound- 
ary element method similar to Olson & Pollard (1989, 
1991). Comparable fracture paths have been simulated 
experimentally on acrylic sheets (Thomas & Pollard 
1993). When the stress ratio is zero, stress perturbations 
caused by mechanical interaction control the propaga- 
tion path. As the stress ratio increases, the T-stress 
becomes large in comparison to the/-stress and propa- 
gation path becomes straighter. 

Regional stress fields during propagation 

In geologic settings, o~ and tr~ are typically compres- 
sive (negative). Thus the internal fluid pressure P must 
be large enough to overcome the magnitude of the 
minimum compressive stress and to increase the driving 
stress of the initial flaw to the point where it begins to 
propagate. In particular, if Sh (SH) is the minimum 
(maximum) principal compressive stress: 

o~ = --Sh 

o[ = --SH. (6) 

Then, for an isolated fracture with a length of 2a, the 
magnitude of P at propagation must be (e.g. Broek 
1986) 

Kic 
P = Sh + V ~ ,  (7) 

where Kic is the mode I critical stress intensity factor 
(fracture toughness) for the material. Combining 
equations (5)-(7), the expression for the stress ratio R 
can be rewritten as: 

R - - ~ ( S H  -- Sh) (8) 
Klc 

For any particular formation, equation (8) allows values 
of the stress ratio R to be estimated from investigations 
of in situ stress states and the fracture properties of the 
geologic material. 

For example, field measurements of the state of stress 
in the Earth's crust (typically based on information from 
wellbore breakouts, hydraulic fracturing and/or seismic 
focal mechanisms) suggest that at depths less than 4 km 
the differential stress often is within the range (McGarr 
& Gay 1978, Barton et al. 1988, Cornet & Julien 1989, 
Guenot 1989, Hayashi et al. 1989, Ljunggren & Amadei 
1989, Matsunaga et al. 1989): 

0 -< (SH -- Sh) --< 40 MPa. (9) 

Similarly, a typical range of the critical stress intensity 
factor KIc can be derived from published stress intensity 
factor measurements collated by Atkinson & Meredith 
(1987b). For many rock types at moderate temperatures 
and confining pressures: 

0.35 <- Kj¢ -< 3.5 MPa- m 1/2. (10) 

SG 16:6-E 



820 C . E .  RENSHAW and D. D. POLLARD 

While K~c values are known to increase with increasing 
fracture length for fractures subject to plane-stress 
boundary conditions (Broek 1986), these boundary con- 
ditions rarely, if ever, exist in geologic environments. 

Substituting the parameter  ranges in (9)-(10) into 
equation (8) suggests that for fractures of length 2a m 
within 4 km of the surface, typical values of the stress 
ratio are within the range: 

0 -- R <-- 200k/a. (11 ) 

For example, the R value for a 1 m long fracture ranges 
between 0 and approximately 140, while for a 10 m long 
fracture, R values range between 0 and 450. While 
different assumptions concerning the appropriate value 
for Klc may increase or decrease the maximum value for 
R given in equation (11), we suggest that expected 
values of R range between 0 and something on the order 
of a few tens to a few hundreds. 

We conclude that some natural fractures have roughly 
planar geometries due to the occurrence of large differ- 
ential stresses which limit the development of fracture 
curvature. Other fractures which develop under rela- 
tively small differential stresses may be quite curva- 
ceous. However,  in what follows we argue that the 
development of fracture curvature may be limited even 
in the presence of a low differential stress. Thus while 
curvaceous patterns accurately reflect low differential 
stress states, their absence does not automatically imply 
the presence of a high differential stress state. 

SUB-CRITICAL FRACTURE GROWTH 
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Fig. 3. Ratio of shear to normal displacement discontinuity along two 
curved fractures. The displacement discontinuity represents the dis- 
tance between two originally adjacent points on either side of the 
fracture. The two fracture paths were modeled under uniform tension 
(R = 0) and uniaxial tension (R = 1) and are the same solutions as in 

Figs. 2(b) & (c). 

As K* < Klc, a comparison between equations (8) and 
(14) suggests that the stress ratio R for a fracture growing 
via chemical stress corrosion will be larger than that for a 
fracture that only grows when K~ = K~. Further, since 
K* is often much less than Klc and can be quite small 
(indeed, a lower bound for Ko has yet to be identified 
(Atkinson & Meredith 1987a)), the stress ratio R can be 
quite large even when the differential stress is small. 
Consequently, propagation paths for two mechanically 
interacting fractures growing sub-critically can be quite 
straight even under small to moderate differential 
stresses. 

In writing equation (7), we have assumed that fracture 
growth is dynamic and that no fracture growth occurs 
when Kt <KIc.  However,  it is well known that fracture 
growth can occur even when K I < K~c by means of 
sub-critical growth mechanisms such as chemical stress 
corrosion (Swanson 1984, Atkinson & Meredith 1987b). 
Indeed, in the saturated environments subject to long- 
term ioadings which are often found in the Earth's crust, 
sub-critical fracture growth mechanisms such as chemi- 
cal stress corrosion may be the dominate mechanism for 
fracture growth. If fracture growth is due to chemical 
stress corrosion, then equation (7) needs to be rewritten 
as" 

K* 
P = Sh + ~--~a, (12) 

where K* is the stress intensity factor. For sub-critical 
fracture growth to occur, K* must be in the range: 

Ko <- K* -< KI~ (13) 

where Ko is the stress corrosion limit (Atkinson 1984). 
Using equation (12), the stress ratio R for sub-critical 

fracture growth can be written as: 

R = X /~a (SH -- Sh) (14) 
K* 

A NEW CURVATURE LIMITING MECHANISM 

Clearly, any significant anisotropy in material 
strength will limit the development of fracture curvature 
regardless of the magnitude of the differential stress. 
However,  even in isotropic, homogeneous media, the 
development of fracture curvature depends on more 
than just the stress state. For example, in this section we 
demonstrate that fracture surface roughness can 
strongly influence the propagation paths of interacting 
fractures. 

We demonstrate the influence of fracture surface 
roughness on propagation paths by first noting that 
stresses at a fracture tip depend on the relative motion of 
the fracture walls (i.e. the displacement discontinuity) 
along the entire fracture. As such, it is important to 
consider conditions along the entire fracture surface 
when analyzing fracture propagation. For example, Fig. 
3 is a plot of the ratio of shear to normal displacement 
discontinuities along the two curved fracture paths 
shown in the inset. These are the same solutions illus- 
trated in Figs. 2(b) & (c). Note that for both fractures, 
the magnitude of the shear displacement discontinuity 
ranges up to more than 10% of the normal displacement 
discontinuity. A question thus arises as to what happens 
if the shear displacement discontinuity along the frac- 
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Fig. 4. Two hypothetical rough fracture wall surfaces. Arrows indi- 
cate the magnitudes of the normal and shear displacement disconti- 
nuities. Note how the maximum magnitude of shear displacement 
discontinuity accommodated at this interface is related to the amount 

of normal displacement. 

ture surface cannot be accommodated? Would this alter 
the fracture path? 

For example, consider the hypothetical fracture sur- 
faces shown in Figs. 4(a) & (b). The amount of shear 
displacement discontinuity that can be accommodated 
along this interface is a function of the normal (opening) 
displacement discontinuity; the more opening, the more 
shear displacement discontinuity that can be accommo- 
dated. As natural fracture surfaces in rock have rough- 
ness due to grain boundaries and growth features such as 
hackle marks and hesitation lines (Brown & Scholz 
1985, Brown et al. 1986, Power et al. 1987, Pollard & 
Aydin 1988), the amount of shear displacement disconti- 
nuity that a natural fracture can accommodate also is 
related to the amount of normal displacement disconti- 
nuity. Similar concerns about accommodation of the 
shear displacement discontinuity along rough fracture 
surfaces and its influence on fracture propagation have 
been raised by several investigators studying fracture 
propagation in laboratory specimens (Hussain et al. 
1974, Kenner et al. 1982, Swanson 1987). 

The boundary element fracture propagation model 
(Olson & Pollard 1989, 1991) was used to investigate the 
influence of limited shear accommodation on propaga- 
tion paths by assuming that the magnitude of the shear 
displacement discontinuity at every point along the 
fracture could only be less than or equal to some con- 
stant fraction of the normal displacement/discontinuity 
magnitude at that location. If the calculated shear dis- 
placement discontinuity at the midpoint of any element 
exceeded the maximum allowable, the magnitude of the 
shear displacement discontinuity at that element was 
adjusted downward to the maximum allowable, and the 
normal and shear displacement discontinuities at all the 
elements recalculated. This process was repeated until 
the maximum allowable shear displacement disconti- 
nuity was not exceeded at any element. 

Figure 5 shows the resulting fracture paths for a 
fracture propagating toward a second echelon fracture. 
The initial geometry of the two fractures is the same as in 
Fig. 2 and the fractures are subject to uniform remote 
tension (R = 0). When the maximum allowable ratio of 
shear (S) to normal (N) displacement discontinuity 
along the fracture is large (S/N --< 0.15), the propagation 
path is equivalent to the case with no restriction on the 
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Fig. 5. Fracture paths for various maximum shear (S) to normal (N) 
discontinuity ratios. Initial flaw geometry and the remote differential 

stress are the same as for Fig. 2(b). 

amount of shear displacement discontinuity (cf. Figs. 2b 
and 5a). However, as the maximum allowable ratio of 
shear to normal displacement discontinuity is decreased 
(S/N -< 0.04 and S/N -< 0.01), the propagation path be- 
comes straighter (Figs. 5b & c). 

DISCUSSION AND CONCLUSIONS 

We have demonstrated how the degree of fracture 
curvature that develops between two mechanically 
interacting fractures depends not only upon the remote 
differential stress, but also upon such factors as the 
growth mechanism and the fracture surface roughness. 
It has been shown by others that the slower growth rates 
often associated with sub-critical fracture growth lead to 
a more inter-granular (as opposed to trans-granular) 
fracturing (Meredith & Atkinson 1983, Hatton et al. 
1993). As inter-granular fracturing results in rougher 
fracture surfaces than trans-granular fracturing, fracture 
growth in the sub-critical regime may enhance the influ- 
ence of fracture surface roughness on propagation 
paths. 

Other factors may also strongly influence fracture 
interaction geometries. For example, it has been shown 
that fracture interactions are generally weaker in three- 
dimensional configurations than in two-dimensional 
configurations (Kachanov 1987). Similarly, the inter- 
action between natural hydraulic fractures, where the 
build up of fluid pressure within the fracture is limited by 
fluid diffusion from the surrounding rock matrix (Secor 
1965, 1969), is weaker than the interaction between 
fractures having constant internal fluid pressures. 

Since fracture interaction geometries depend upon 
more than just the remote differential stress, it may be 
dangerous to use the results from numerical models of 
fracture propagation that ignore these curvature- 
limiting and other, possibly curvature-enhancing, mech- 
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a n i s m s .  C o n s e q u e n t l y ,  p r e d i c t i o n s  o f  t h e  absolu te  mag-  

n i tude  of  t h e  d i f f e r e n t i a l  s t r e s s  d u r i n g  t h e  f o r m a t i o n  o f  a 

f r a c t u r e  se t  s h o u l d  b e  r e v i e w e d  w i t h  s k e p t i c i s m  u n l e s s  

all o f  t h e  c u r v a t u r e - i n f l u e n c i n g  m e c h a n i s m s  h a v e  b e e n  

e v a l u a t e d .  

I n  m a n y  s i t u a t i o n s  i t  m a y  b e  r e a s o n a b l e  to  a s s u m e  t h a t  

t h e  f a c t o r s  c o n t r o l l i n g  f r a c t u r e  c u r v a t u r e ,  o t h e r  t h a n  t h e  

s t r e s s  s t a t e ,  w e r e  s i m i l a r  f o r  t w o  d i f f e r e n t  f r a c t u r e  se t s .  

In  t h e s e  ca ses ,  c o m p a r i s o n s  b e t w e e n  t h e  relative magn i -  

tudes  of  t h e  d i f f e r e n t i a l  s t r e s s  d u r i n g  t h e  f o r m a t i o n  o f  

b o t h  se t s  c a n  r e a s o n a b l y  b e  m a d e  ( O l s o n  & P o l l a r d  

1989, C r u i k s h a n k  et al. 1991) .  H o w e v e r ,  c o m p a r i s o n s  

b e t w e e n  f r a c t u r e  se t s  f r o m  d i f f e r e n t  f r a c t u r e  n e t w o r k s ,  

p a r t i c u l a r l y  b e t w e e n  f r a c t u r e  se t s  f r o m  d i f f e r e n t  r o c k  

t y p e s  a n d / o r  d i f f e r e n t  g e o l o g i c  s e t t i n g s ,  m a y  b e  p r o b l e -  

m a t i c .  
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